Giant saltation on Mars.
نویسندگان
چکیده
Saltation, the motion of sand grains in a sequence of ballistic trajectories close to the ground, is a major factor for surface erosion, dune formation, and triggering of dust storms on Mars. Although this mode of sand transport has been matter of research for decades through both simulations and wind tunnel experiments under Earth and Mars conditions, it has not been possible to provide accurate measurements of particle trajectories in fully developed turbulent flow. Here we calculate the motion of saltating grains by directly solving the turbulent wind field and its interaction with the particles. Our calculations show that the minimal wind velocity required to sustain saltation on Mars may be surprisingly lower than the aerodynamic minimal threshold measurable in wind tunnels. Indeed, Mars grains saltate in 100 times higher and longer trajectories and reach 5-10 times higher velocities than Earth grains do. On the basis of our results, we arrive at general expressions that can be applied to calculate the length and height of saltation trajectories and the flux of grains in saltation under various physical conditions, when the wind velocity is close to the minimal threshold for saltation.
منابع مشابه
Saltation transport on Mars.
We present the first calculation of saltation transport and dune formation on Mars and compare it to real dunes. We find that the rate at which grains are entrained into saltation on Mars is 1 order of magnitude higher than on Earth. With this fundamental novel ingredient, we reproduce the size and different shapes of Mars dunes, and give an estimate for the wind velocity on Mars.
متن کاملDifference in the wind speeds required for initiation versus continuation of sand transport on mars: implications for dunes and dust storms.
Much of the surface of Mars is covered by dunes, ripples, and other features formed by the blowing of sand by wind, known as saltation. In addition, saltation loads the atmosphere with dust aerosols, which dominate the Martian climate. We show here that saltation can be maintained on Mars by wind speeds an order of magnitude less than required to initiate it. We further show that this hysteresi...
متن کاملElectrification of wind-blown sand on Mars and its implications for atmospheric chemistry
[1] Wind-blown sand, or ‘saltation,’ creates sand dunes, erodes geological features, and could be a significant source of dust aerosols on Mars. Moreover, the electrification of sand and dust in saltation, dust storms, and dust devils could produce electric discharges and affect atmospheric chemistry. We present the first calculations of electric fields in martian saltation, using a numerical m...
متن کاملLarge Aeolian Ripples: Extrapolations from Earth to Mars
Introduction: The shapes produced on terrestrial surfaces that are continually subject to aeolian processes range in size from tiny ripples to giant draa [1]. The physical mechanism of the formation of ripples, the smallest of aeolian bedforms, is intimately related to saltation and reptation processes. Sand and granule ripples are typically tens of reptation path lengths wide and do not alter ...
متن کاملSaltation impact as a means for raising dust on Mars
Experiments were conducted under atmospheric pressures appropriate for Earth and Mars to determine the e,ciency of sand in saltation as a means for raising dust into the atmosphere under wind speeds which would otherwise be too low for dust entrainment. Experiments involving intimate mixtures of sand and dust (1:1 ratio by mass) showed that after an initial .urry of activity of a few seconds du...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 17 شماره
صفحات -
تاریخ انتشار 2008